

The PolyPaint Pack allows you to paint directly on the mesh of your objects, without the need of
bitmaps. Each vertex of the object will have a RGBA value associated with it. Yes, you can also
paint Alpha information with PolyPaint.
It also allows you to load the RGBA information stored in a special kind of .OBJ and .FBX files.
It includes a set of tools to allow the creation and editing of all those RGBA values.
At the end, you can also render objects that carry that extra RGBA information.

PolyPaint Pack is made up of six plugins.

• PolyPaint Tag is a tag that you attach to any object that you want to add
RGBA surface information to. It can be any polygonal object, be it modelled
inside Cinema 4D or loaded from any other application or internet.

• PolyPaint Shader is a shader that will interpret the RGBA data stored inside
the PolyPaint Tag allowing you to render that RGBA data.

• PolyPaint Tool is a painting tool for painting on the surface of your object.

• PolyPaint Transfer is a tool for transferring RGBA surface information of an
object, stored in a PolyPaint Tag to another PolyPaint Tag, attached to
another object.

• PolyPaint From Material is a tool for transferring RGBA information from a
Material assigned to the object to be stored in the PolyPaint Tag.

• PolyPaint Editor is an “invisible” plugin that allows for fast display of RGBA
surface information in the editor. Don’t even bother searching for this plugin.
It performs its work “under-covered”.

This is a very complex set of tools so it is advised to read this manual in order to understand what
are the limitations and how and why some features work the way they do.

PolyPainting or Vertex Painting is supported by some 3D applications. Examples of such
applications are zbrush, 3D Coat or Blender. They associate RGBA values with each vertex and are
capable of exporting the 3D meshes and their associated RGBA values in a specially
formatted .OBJ or .FBX format.
When Cinema 4D opens these .OBJ or .FBX files, it ignores all the RGBA data and only loads the
geometry information.
Nevertheless, being able to use that RGBA information and keep it associated with each vertex
has some advantages.
For instance, no matter how much the mesh is distorted, the mapping of the color stays attached
to the mesh. In fact, there is no mapping at all. There are no projection modes, no UVs, nothing.
The document does become bigger, though. A list with RGBA values must be stored with an entry
for each vertex of the object and, if the object is very dense, that list can take up a lot of space. 

The PolyPaint Tag is the central point of the whole set of tools. This means that all other tools
depend on this tag and, without it, no other tool will work.
Whether you create your own object in Cinema 4D or you import an object from elsewhere, the
first thing you need to do, before using any other tool from PolyPaint Pack, is to add a PolyPaint
Tag to the object.
It is only possible to add this tag to polygonal objects. If, by any chance, you add it to a parametric
object, it will not work.
Once you add a PolyPaint Tag to a polygonal object, you get these parameters in the Attribute
Manager:

If the object with the PolyPaint Tag attached is an object loaded from a .OBJ file that was
exported from an application that includes RGBA values for each pixel (ZBrush, 3D-Coat or
Blender, for example), press the Load and analyse .OBJ file button.

After pressing the Load and analyse .OBJ file button, a dialog will open allowing you to choose a
.OBJ file. You should choose the same file that was used to load the mesh into Cinema 4D.
If the file you choose is not a .OBJ file, this message will be displayed:

PolyPaint Tag

If the number of RGBA values read from the .OBJ file does not correspond to the number of
points in the object, this message will be displayed:

If all goes well, you will get something similar to this in the Attribute Manager, below the
buttons:

Usually, it is advisable to import .OBJ files without optimising unused points (one of the options
in the dialog that pops-up when importing .OBJ files). But, since PolyPaint provides information
about how many RGBA values were read and how many vertexes the object has, it is usually
simple to decide if importing the file again with different options is advisable or not.

PolyPaint is also smart enough to identify .OBJ files that have RGBA values coded in the two
main formats and load them without the need of further information from you.

All the information given above about the importing of RGBA information from .OBJ files also
applies to .FBX files.
However there are some limitations regarding .FBX files.

• The .FBX files MUST be in 6.x format. 1

• The .FBX files MUST be saved in ASCII or TEXT format.

Binary .FBX files or 7.x version .FBX files will NOT WORK (see Addendum).
Due to the way that .FBX files store the RGBA information, the PolyPaint Tag may have to deal
with a huge amount of data. So, it is advisable that this file format be used with only simpler,
smaller models.
Since the PolyPaint Tag will only affect the object it is attached to, with a .FBX file made up of
multiple objects in a hierarchy the PolyPaint Tag will NOT work, therefore the .FBX file MUST
be a single object in order to work. So, another limitation is:

• The .FBX files MUST contain a single object, not a group/hierarchy of objects.

 Very important!! Check out the Addendum, at the end of this manual.1

The inclusion of the .FBX import option is mainly for Unity users that have old .FBX files but any
software that can export files in .FBX format (in version 6.x and in ASCII/TEXT) can be used to
send files to the PolyPaint Tag.
Below the Load and analyse buttons are the Export buttons. Each one will export, respectively,
the object whose PolyPaint Tag is attached to, in .OBJ or .FBX format.
Remember that, if you decide to export in .FBX format, the file will always be exported in version
6.x and in ASCII/TEXT format. (see the Addendum at the end of this manual)
Also, the exporting in the .OBJ format will always occur in the format used by zBrush and 3DCoat
(the one that codes RGBA values in lines prefixed with MRGB). Exporting in .OBJ format will also
export a .MTL file. But this file could usually be ignored.

However, if your object is not derived from an .OBJ file or an .FBX file that carries RGBA
information, don’t worry. You can still initialise the PolyPaint Tag with a color and start using
any of the paint tools provided with PolyPaint Pack.
To do that, choose a color from the color swatch, a value for the Alpha, and press the Initialise
button.

The PolyPaint Tag is where all the RGBA values are stored. So, if you delete this tag, you will lose
all the RGBA information for that object.
Also, you should not drag this tag from an object onto another because the RGBA values stored in
the tag have a direct relation with the amount and index number of the vertexes of the object it is
attached to. So, if you decide to drag the PolyPaint tag around, you are risking that something
bad or unexpected happens.
For high density meshes, this tag can grow up in size quite a lot. This means that your document
will get much heavier in size too. So, avoid importing or creating objects that are very dense.
If you import objects from other applications, try to export them in a single piece. Sometimes,
objects exported from other applications, when imported into Cinema 4D, arrive separated in
several objects. You can always select them all and perform a Connect and Delete but,
sometimes, this messes up the point count. Performing an additional Optimize may, sometimes,
mess up the point count even further. When you try to Analyse .OBJ file, the point count will not
match the number of RGBA values, resulting in an error.
You can ONLY HAVE ONE PolyPaint Tag per object. That is a limitation imposed by the
complexity and size of the data that is being stored and managed. Maybe in future releases
multiple PolyPaint Tags may be added.

Once the RGBA values are initialised – be it through the Analyse .OBJ, the Analyse .FBX file or
through the Initialise button – you can start doing stuff with that additional information.

In the Display section, you can choose what and how it is displayed. You can choose from:

• RGB - Only the color information is show.
• Red - Only the red component of the color information is show.
• Green - Only the green component of the color information is show.
• Blue - Only the blue component of the color information is show.
• RGB+Alpha - The color information is shown, blended with the Alpha

information.
• Alpha - Only the Alpha information is show.

If the Color Display is set to Red, Green or Blue, turning ON the Invert option, will display the
relevant channel inverted.
If the Color Display is set to RGB+Alpha or Alpha, turning ON the Invert option, will display
the Alpha channel inverted.

If the Color Display is set to RGB+Alpha or Alpha, it is also possible to set the color that is used
to show the Alpha information (defaults to black).

If the Link with PolyPaint Tool option is ON, when the Color Display is set to RGB+Alpha, RGB
or Alpha, the correspondent paint option in the PolyPaint Tool will be adjusted accordingly. This
can be turned ON or OFF in the PolyPaint Tag or in the PolyPaint Tool(see the PolyPaint Tool,
below).

By default, no color is shown in the editor. To show any color choose an option different than
None from the Editor Preview list. You have:

• Slow - Always - With this option selected the object will ALWAYS show the
RGB values correspondent to each vertex, even if the object is not selected. 
However, this option has several limitations:

 - you CAN’T see the effect of painting operations while painting
 - you CAN’T see any Alpha information, just RGB, Red, Green or Blue.
 - you CAN’T select points, edges or faces of the object for editing
 Since this option is slower than other options, you have the option of

displaying just a percentage of faces to speed up display (see below).

• Fast - Any Selected - With his option selected, the object shows the RGBA
values correspondent to each vertex as long as the object is selected or ANY
OTHER OBJECT with a PolyPaint Tag set to Editor Preview mode of Fast or
Fastest is also selected. 
As soon as no object is selected (or, at least, no object with a PolyPaint Tag
set to Editor Preview of Fast or Fastest), the object will stop displaying the
RGBA values. 
This mode can be used for painting operations with the PolyPaint Tool.

• Fastest - Active Only - With his option selected, the object shows the RGBA
values correspondent to each vertex, only when the object itself is selected. 
As soon as the object is deselected, the RGBA values associated with each
vertex will stop being displayed. 
This mode can be used for painting operations with the PolyPaint Tool.

When the Editor Preview is set to Slow - Always, the Consider Scene Lights and LOD
Reduction options become active.

Turning the Consider Scene Lights option ON, will evaluate the scene lights and shade the faces
accordingly. If turned OFF, the faces are shown as if the display mode is set to Constant Shading.
The LOD Reduction option is set to 50% by default. This means that only 50% of the faces are
shown. Increasing this value will display even less faces and decreasing this value will display
more faces. When LOD Reduction is set to 0%, all faces will be displayed (slower display). When
LOD Reduction is set to 100%, no faces will be displayed (faster display).

The Color Mode options include:

• No compensation - No attempt is made to adjust the RGBA values for any
specific color workflow. The colors are displayed as they are.

• Compensate for sRGB - The displayed RGBA values are compensated for
sRGB. What this means is that if you previously painted your mesh in an
application that does not work in Linear workflow, when previewing the
painting in Cinema 4D, the color may appear too washed out. 
Setting the Color Mode to Compensate for sRGB will display the RGBA
values already compensated to better match the color aspect of the original.

• Compensate for Linear - It is the opposite of the Compensate for sRGB
options. If the displayed RGBA values are darker and more saturated than the
original RGBA values were, in the application where you painted your mesh,
set the Color Mode to Compensate for Linear and the displayed RGBA
values will be compensated to better match the color aspect of the original.

Due to the way Cinema 4D shows the objects in the Editor – in Fast and Fastest mode – the color
of the RGBA values attached to the object is displayed multiplied by the solid color of the mesh.
This means that, if your object is not shown in the Editor as plain white, the RGB values will
show up darker or tinted because the default color of objects without any material is grey.

It is advised that you, at least, create a simple material with the Color channel set to white and
attach it to the object containing the PolyPaint Tag.
Just press the Create Base Material button and this will create a new material, set the Color
channel to pure white, insert a PolyPaint Shader (see below) into the texture/shader slot of that
material and assign the PolyPaint Tag to that PolyPaint Shader.
If the Add to Alpha Channel option is On, the same PolyPaint Shader is also inserted in the
Alpha Channel of the material, the Alpha Channel is turned On and the Use Alpha option of the
PolyPaint Shader is automatically turned On.
Finally, the material is added to the object, right after the PolyPaint Tag, all ready for rendering.

 You can also set this up manually if you need to.

If you find yourself configuring the PolyPaint Tag to a specific set of options whenever you create
a new one, maybe you should consider setting a new set of options as the default. To do that,
adjust the options of the PolyPaint Tag to the values you prefer and press the Set Default button.
From now on, every time you create a new PolyPaint Tag, the saved options will be already set as
the default ones, until you save a new default set.

Note: To be able to save defaults on a Windows system, Cinema 4D has to be set to run as
Administrator.

The PolyPaint Shader has the sole purpose of providing a render-time representation of the
RGBA values stored in the PolyPaint Tag.
It can be used in any channel and in any slot of any shader that uses color or grayscale as input.
The PolyPaint Tag field is where you must drag the PolyPaint Tag into. If no tag is there or the
tag still has no RGBA values, the render will not return the expected colors.

So, to correctly render the RGBA colors, drag the correct PolyPaint Tag into this field.
The Editor Color (defaults to white) is the color that is displayed/rendered when the RGBA
values are not being showed. For example, when the Fast/Fastest mode is set and no object is
selected.
The Color Mode parameters serves the exact same purpose as the Color Mode parameter in the
PolyPaint Tag but, this time, for render.
The Best Quality option (ON by default) determines the type of interpolation used for rendering
the RGB values. Turning off the Best Quality does not increase the render speed too much and
choosing between having it on or off is more a matter of visual style required.

Turning ON the Use Alpha option will output the Alpha information instead of the RGB
information. This is best used on channels like Alpha, Transparency or Bump.
Turning ON the Invert option will invert the Alpha information output.

PolyPaint Shader

Editor View Best Quality ON Best Quality OFF

The PolyPaint Tool is a multi-purpose tool for painting and editing the RGBA values stored in
the PolyPaint Tag.
In order for this tool to work some requirements must be met:

• A polygonal object must be selected.
• The polygonal object must have a PolyPaint Tag attached.
• The PolyPaint Tag must contain RGBA values (loaded or initialised)
• The Editor Preview mode of the PolyPaint Tag must be set to Fast or

Fastest.

If any of these requirements is not met, the PolyPaint Tool will NOT work.
So, make sure all requirements are fulfilled and, if necessary, change to any other tool (Selection,
Move, Scale, Rotate, etc) and get back to the PolyPaint Tool.
While the PolyPaint Tool is active, the Attribute Manager shows this layout:

The Visible only option, when turned ON, will make that all paint/editing operations that are
manually executed on the model (not using the Apply All button), will only affect vertexes that
are not hidden by any part of the model.
The Apply All button will execute the operation defined by the Mode parameter on all the vertexes
of the model.
The RGBA parameter defines if the painting occurs in the RGB only, in the Alpha only or in both,
at the same time (this applies to the manual painting or the Apply All button).
If the Link with PolyPaint Tag option is ON, changing the RGBA parameter will adjust the Color
Display parameter of the PolyPaint Tag accordingly. This way, you are sure that you are always
seeing what you are painting. If the Link with PolyPaint Tag option is OFF, it is possible to paint
on RGB and don’t see the result, if the Color Display parameter of the PolyPaint Tag is set to
Alpha, or paint on the Alpha and don’t see the result, if the Color Display parameter of the
PolyPaint Tag is set to RGB.
It is possible to turn ON/OFF the link between the PolyPaint Tag and the PolyPaint Tool both
from the PolyPaint Tag or the PolyPaint Tool.

PolyPaint Tool

Sometimes, the parameters Radius and Amount will work in slightly different way whether the
paint operation is done by hand, directly on the surface of the model or if it is applied by pressing
the Apply All button. Both behaviours are described below, for each Mode.
The Radius option defines the size of the brush. This is an absolute pixel-sized value. This means
that if, for example, the radius is set to 30, it will always be 30 pixels wide, no matter how
zoomed in or zoomed out the editor is.
The Amount option defines how heavily the paint/editing effect is applied. Some modes work
better with low values and this will be pointed out, individually, below.
The Hardness option defines the smoothness of the edge of the brush. Some modes work better
with low values and this will be pointed out, individually, below.
In the following pages, a detailed explanation of each painting mode is provided.

Finally, the Selections group:

If the Selected only option is turned on, the painting operations (painting directly on the mesh
or clicking the Apply All button) only affect the vertexes that are selected.

If the Selection Tag field contains a Point Selection Tag, the painting operations (painting
directly on the mesh or clicking the Apply All button) only affect the vertexes that are marked as
selected in that Point Selection Tag (the Point Selection Tag must belong to the object that
contains the PolyPaint Tag).
If the Selection Tag field contains a Vertex Weight Tag, the painting operations (painting
directly on the mesh or clicking the Apply All button) only affect the vertexes that have a
percentage bigger than 0% in that Vertex Weight Tag (the Vertex Weight Tag must belong to
the object that contains the PolyPaint Tag). The amount of paint/effect applied is a multiplication
of the value of the Amount field and the value of the weight set in the tag.

If the Selection Tag field contains a Point Selection Tag or a Weight Map Tag and the Selected
only option is turned on, the painting only affects the points that are live-selected AND marked as
selected (or weighing more that 0%) in the tag dragged into the Selection Tag field. 

Paint Modes - Explained
This is the initial image over which all the paint/editing modes will be applied on. If anything
works in a particular way in Apply All or when affecting Alpha, an explanation will be provided.

 

Paint

This mode allows you to paint the vertexes with
color.
The color is always applied in normal mode.
This means that no Multiply, Screen, Overlay, etc,
modes are provided.

This will fill the whole mesh with the defined color.

To tint the all mesh with a color, lower the Amount
value to something less than 100%.

The Radius and Hardness values are ignored.

�

Clicking the Apply All button

Painting directly on the mesh

Darken
This mode allows you to darken the color of the
vertexes until they reach pure black.
The amount of darkening is controlled by the
Amount parameter.

This works better with low Amount values.

This will darken the whole mesh by the values set in
the Amount parameter.

The Radius and Hardness values are ignored.�

Clicking the Apply All button

Painting directly on the mesh

The value that is painted in the Alpha (if RGB+Alpha or Alpha is set in the RGBA parameter)
is set by the Alpha value slider, below the color sliders. The Amount value is ignored.

 

Lighten
This mode allows you to lighten the color of the
vertexes until they reach pure white.
The amount of lightening is controlled by the
Amount parameter.

This works better with low Amount values.

This will lighten the whole mesh by the values set
in the Amount parameter.

The Radius and Hardness values are ignored.�

Clicking the Apply All button

Painting directly on the mesh

More Contrast
This mode allows you to darken the dark color and
lighten the light colors of the vertexes.
The amount of darkening/lightening is controlled
by the Amount parameter.

This works better with low Amount values.

This will darken all the dark colors and lighten all
the light colors of the whole mesh by the values set
in the Amount parameter.

The Radius and Hardness values are ignored.

�

Clicking the Apply All button

Painting directly on the mesh

Less Contrast
This mode allows you to darken the light color and
lighten the dark colors of the vertexes.
The amount of darkening/lightening is controlled
by the Amount parameter.

This works better with low Amount values.

This will darken all the light colors and lighten all
the dark colors of the whole mesh by the values set
in the Amount parameter.

The Radius and Hardness values are ignored.

�

Clicking the Apply All button

Painting directly on the mesh

  

Pick Color Point

This mode allows you to pick a color by dragging on
top of the mesh. The picked color will be the one
nearest the center of the brush.

Radius, Amount and Hardness are ignored.

The resulting color is an average of all the colors of
the mesh,

Clicking the Apply All button

Picking directly on the mesh

Desaturate
This mode will remove color vibrance from the colors
of the vertexes until they reach a grey value.
The amount of saturation removed is controlled by
the Amount parameter.

This will desaturate the whole mesh colors by the
values set in the Amount parameter.

The Radius and Hardness values are ignored.�

Clicking the Apply All button

Painting directly on the mesh

This mode will not affect the Alpha because the Alpha is always grayscale.

Saturate
This mode will add color vibrance to the colors of
the vertexes.
The amount of saturation added is controlled by the
Amount parameter.

This will saturate the whole mesh colors by the
values set in the Amount parameter.

The Radius and Hardness values are ignored.�

Clicking the Apply All button

Painting directly on the mesh

This mode will not affect the Alpha because the Alpha is always grayscale.

Pick Color Average
This mode allows you to pick a color by dragging on
top of the mesh. The picked color will be the
average of all coloured vertexes inside the brush
radius.

Amount and Hardness are ignored.

The resulting color is an average of all the colors of
the mesh,

Clicking the Apply All button

Picking directly on the mesh

Smooth
This mode will smooth/blur the colors inside the
radius of the brush.
The amount of smoothness is controlled by the
Amount parameter. 
Works better with low Amount and low Hardness.

This will smooth the whole mesh colors by the
value set in the Amount parameter.

Only colors closer to each vertex than the Radius
will be considered for smoothing.

Hardness values are ignored

�

Clicking the Apply All button

Painting directly on the mesh

WARNING!!
The Apply All button, when in Smooth mode,

does not work in Cinema 4D for Windows 32 bits.

PolyPaint Pack works better with meshes that are not extremely dense. PolyPaint Pack works
faster when it does not have to deal with a lot of data as an RGBA value must be saved for each
vertex of the mesh).
However, sometimes, higher density meshes must be used. Wether they are created inside
Cinema 4D with the Subdivide command (usually with the HyperNURBS subdivide option ON),
or simply importing a higher density version of the same mesh.
The same PolyPaint Tag can't work properly in objects whose point count increased. For example,
if your original object has 794 vertexes, the PolyPaint Tag was storing 794 RGB values. As soon
as the object has more vertexes, lets say, 3176 vertexes, only 794 vertexes can be painted with
color and the rest will show up as black.

So, if you already have an object painted, it would be nice to be able to transfer all the color
information to another object that has a different vertex count. And that is exactly what the
PolyPaint Transfer tool does.
This is the dialog of the PolyPaint Transfer tool:

Into the Source field, you drag the object from which you want to copy the colors.
Into the Destination field, you drag the object onto which you want to copy the colors.
Each object must contain a PolyPaint Tag initialised with some color information. 

PolyPaint Transfer

The Mode parameters has two options:

• Nearest Point - Each vertex of the destination object will receive the color of
the nearest vertex of the source object.

 Each vertex is assigned the local coordinates based on the objects axis. This
means that the object the RGB information is being transferred to can be in a
different location within the scene without any loss of data or errors.

 If the Global Coordinates option is On, the objects must be aligned and
positioned in, roughly, the same location.

• Ray Collision - Virtual rays are fired from each vertex of the destination
object. Wherever those virtual rays hit the surface of the source object, the
color is sampled from that location and stored in the "ray emitting" vertex.

 This mode ALWAYS works in local mode so the objects can be placed in
different locations and with different orientations.

Some calculations take up some time, especially with meshes that are very dense. Look to the
status bar (lower left) to check the progress of the tool, after pressing the Transfer button.
There are no fixed rules for choosing any particular Mode but, usually, for transferring from a
lower-density model (source) to a higher-density model (destination), the Ray Collision mode
works a bit better. And, for transferring from a higher-density model (source) to a lower-density
model (destination), the Nearest Point mode works a bit better.
If the transfer is taking too long, it is possible to press the ESC key to interrupt the operation.
Only the colors transferred so far will be kept and everything else will remain with the previous
color, if there was any.

The Use parameter allows you to define what gets transferred. If the RGB only, the Alpha only or
the RGB+Alpha together. 

The PolyPaint from Material command allows you to use regular materials, applied to objects, to
create RGB values, without the need of painting by hand. Optionally, you can also transfer Alpha
information from the material to the Alpha values stored in the PolyPaint tag.
It is a very simple command and it has some limitations. But, used wisely, can produce excellent
results and save lots of time and work.
To use this command, some requirements must be met:

• The object must contain a PolyPaint Tag already initialised.

• The object must have a UVW tag.

• The UVs should not be overlapping (use the BodyPaint UV Edit

to edit them, if necessary)

• For better results, just one UVW tag should be present and,

ideally, be the last tag of the object.

Create and apply as many materials you need. Adjust their projection, placement and any other
material tag parameters, as required. Combine materials with Selections, with Mix Textures, with
Alphas, turning on/off Tile, etc. When all the materials are placed and rendering yields the correct
result, choose the PolyPaint From Material command.
Drag the object to the Object field and press Transfer.

If it all went well, you can now delete the Material tags and the UVW tag.
To see if it all went well, make sure you set the Editor Preview option of the PolyPaint Tag to
anything other than None.

Adjusting the Quality parameter allows you to define how accurately the materials will be
sampled. However, the final quality of the resulting transfer depends greatly on the amount and
density of points of your mesh. Higher Quality values means more accuracy but also, longer time
to calculate the sampled colors.

The Use option can be set to RGB+Alpha, RGB or Alpha. If the option includes RGB, the color
in the Color channel is transferred. If the option includes Alpha, any information included in the
Alpha channel of the material is transferred to the Alpha values contained in the PolyPaint Tag.
Due to the way the calculations are performed, if there is any information in the Alpha channel of
the material, that information will be multiplied with the Color channel information when stored
in the RGB values stored in the PolyPaint Tag.

If you just want to transfer color information to some points, select the points and make sure you
turn on the Selected points only option before pressing the Transfer button of the PolyPaint from
Material command.

PolyPaint from Material

It is also possible to use several materials in different PolyPaint from Material sessions, by
composing many color transfers. This is achieved by repeating all the steps described above,
making sure that the Selected points only option is turned On and that different sets of points are
selected each time.

With some artistic use of bitmaps, some very nice results can be obtained.
And, all the colors are now attached to the points of the object, so you can deform it as much as
you want and you can also edit the colors with the PolyPaint Tool. 

This new PolyPaint From Material command works fine for most cases but, for low-poly meshes,
the old PolyPaint From Material command actually works better. So, to keep everyone pleased,
the old command was kept but renamed to PolyPaint From Material (Legacy).
However, the old command had a few extra limitations, besides the ones that were listed for the
new command. And they are:

• The object must only have one material (the one that is to be processed).
• The object must have a UVW tag.

The material tag should keep all the values at their defaults, except for the Projection that must be
set to UVW Mapping. This means that, for example, the tiling – if set – will be ignored. Although
these seem to be lots of complicated conditions, it is quite easy to make sure they all are fulfilled. 
Do the following:

• Create a new material.
• In the Color channel, load a bitmap or a shader and adjust it as you want.
• Drag the material to the object (make sure there is no other material or

UVW tag assigned to the object).
• Adjust the Projection to whatever type is best for you (Flat, Spherical,

Cubic, etc).
• Adjust the position, scale and rotation of the material (select Texture mode,

turn ON the Enable Axis modification icon and use the Move, Scale and
Rotate tools).

• When happy with the result, right-click the Material tag and choose
“Generate UVW Coordinates” from the menu list. The Material tag
Projection mode will change to UVW Mapping and a new UVW tag will be
created.

• Choose the PolyPaint from Material (Legacy) command.
• Drag the object to the Object field, adjust the Use option if necessary and

press Transfer.

If it all went well, you can now delete the Material tag and the UVW tag.

To see if it all went well, make sure you set the Editor Preview option of the PolyPaint Tag to
anything other than None.

Besides these small differences the PolyPaint From Material (Legacy) works just the same as
the new PolyPaint From Material. Namely, the Selected points only option (see above). 

PolyPaint from Material

Finally…

As a final piece of advice, since PolyPaint Pack deals with huge amounts of data, save often.
All the tools were tested intensively but it is always better to be safe than sorry.

This set of plugins was extensively tested by me and a beta tester.
However, not all possible scenarios could be evaluated. If you find any behaviour that you
consider to be a bug, please report it to me, at rui_mac@ruimac.com

mailto:rui_mac@ruimac.com
mailto:rui_mac@ruimac.com

Three additional commands were added to version 1.5 of PolyPaint Pack: PolyPaint FBX Import,
PolyPaint FBX Export and PolyPaint Cleaner.

PolyPaint FBX Import and PolyPaint FBX Export

The limitation of only being able to import and export RGBA information from FBX 6.0 files is finally gone.
This is very good news for Unity users.
So, in version 1.5, two additional commands were added for exporting were added.
In your Plugins menu, there will be an extra entry, named PolyPaint AddOns and, inside it, two new
import/export commands: PolyPaint FBX Import and PolyPaint FBX Export.

To import the RGBA information that is inside an FBX 7.2 file, first open the FBX file using the Open or
Merge command of Cinema 4D.
Once the mesh is loaded, add to it a PolyPaint tag and Initialise it.
Make sure the object containing the PolyPaint tag is selected and choose PolyPaint FBX Import from the
Plugins->PolyPaint AddOns menu and choose the same FBX file you used to load the mesh into Cinema
4D.
If it all goes well - error messages are displayed if something goes wrong - you can now display and edit the
colors on the mesh (setting a Editor Preview to something other than None is required, of course)

To export your painted mesh to FBX 7.2 format, including the RGBA values in the file, make sure the
painted mesh containing the PolyPaint tag is selected and choose the PolyPaint FBX Export command
from the Plugins->PolyPaint AddOns menu.
A Save dialog will appear, allowing you to choose the name and location of the FBX file.

When the FBX file is imported into Unity, a shader that reads the vertex color information is required.
There are many free shaders or packages with shaders available for Unity that shade objects based on their
Vertex Color information. You must use the correct one for interpreting the Alpha information also.

PolyPaint Cleaner

The number of points of the object that contains a PolyPaint tag must match the number of RGBA values
stored in that PolyPaint tag. If the user deletes or adds points to an object after initialising a PolyPaint tag,
those numbers will not match. This can lead to a number of problems, specially when exporting the object
since the list of vertexes will not match with the list of RGA values.
If the number of vertexes and RGBA values does not match, the PolyPaint Tag will show a warning.

This will also prevent you from exporting in .OBJ or .FBX format. If you try it, you will get a warning stating
the same and prompting you to correct the problem before continuing.

Also, PolyPaint tags created with versions of PolyPaint prior version 1.5 will not include the Alpha
information. So, if you open a file with PolyPaint tags created with PolyPaint prior version 1.5, you will
not be able to paint on the Alpha or use the Alpha information.

Addendum
PolyPaint AddOns

To fix all these situations, select an object that contains a PolyPaint Tag and choose PolyPaint Cleaner
from the Plugins->PolyPaint AddOns menu. This will check if the number of points matches the number
of RGBA values. If it doesn’t, it will add or delete RGBA values to or from the PolyPaint tag to make it all
match.
Also, if there is no Alpha information, that layer of information is added, so that all Alpha operations
become possible.
So, if you load an older file with PolyPaint tags, perform a PolyPaint Cleaner command on all objects
containing tags so that they all get updated to version 1.5
Also, before exporting to .OBJ or .FBX, just in case, perform a PolyPaint Cleaner command on the object,
just to make sure everything is fine.
After performing the PolyPaint Cleaner command, a window with information about what was done will
appear. 

I wish to thank Rodrigo Bitencourt Rodrigues (cyanographics@gmail.com), an animation movies
graduate from the UFPEL (Universidade Federal de Pelotas - Brasil), who first contacted me about
the possibility of creating a plugin to read and render RGB information from .OBJ files created in
Zbrush.
I started coding in python, first to create the tag that would read and store the RGB values and
then, to code the shader that would render those RGB values. The tag worked just fine but, due to
limitations of the python libraries, the shader proved to be just too slow for efficient renders. That
is why I finally decided that it was time to dive into the C++ world.
So, thank you very much, Rodrigo. Without you, PolyPaint Pack would not exist and I would not
have started coding in C++. I would also like to thank you for the excellent beta-testing of this
set of plugins and for providing great material for me to test the code on my own, as I was coding.

I would also like to thank everyone who bared with me at the Plugin Cafe (www.plugincafe.com)
with all my constant questions and doubts about C++.
I would like to address a special thank you to Scott Ayers (ScottA) and Cactus Dan who were
especially patient and helpful.

I would like to also thank “TheJimReaper” (Jim Field), James Leaburn and StCanas for helping me
out with the proofreading of this manual. 

Acknowledgements

mailto:cyanographics@gmail.com
http://www.plugincafe.com

Version History:

Version 1.0 (September 2014)
- Initial release.
- Only .OBJ files created with zBrush, 3DCoat and similar application, storing the RGB colors in

MRGB blocks are supported.
- Only .FBX files saved in ASCII format in version 6.x are supported.

Version 1.1 (December 2014)
- Added importing of .OBJ files with RGB values coded directly in the vertex coordinates lines

(like the ones created with meshlab application).
- Changed the algorithm to smooth colors locally and globally. It contained a bug and works

much better now.
- Small speed improvements in the PolyPaint Transfer in Nearest Point mode.

Version 1.2 (May 2015)
- Added importing and exporting of .FBX files saved in ASCII format in version 7.2, mainly for

Unity compatibility.

Version 1.5 (July 2015)
- Added the ability to work with Alpha information.
- All tools, modes and commands that could use Alpha were updated.
- New visualisation modes.
- New PolyPaint From Material command, allowing for more complex an flexible use of

materials and projections to generate PolyPaint information.
- Added a new PolyPaint Cleaner command.
- Added the possibility of storing defaults for the PolyPaint Tag.
- Added a link between the PolyPaint Tag display and the PolyPaint Tool paint.
- Bugs cleaned from several tools, mainly in the manual Smooth mode in the PolyPaint Tool.

Version 1.5.2 (February 2016)
- Added the ability to work with Alpha information in the PolyPaint From Material command

and PolyPaint From Material (Legacy) command.
- The .OBJ export now works in R17 also (it got broken after R16).
- Small internal tweaks to the PolyPaint Tool, mainly in the Smooth (Apply All) algorithm.

